
 191

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

More Ada in Non-Ada Systems
A. Marriott, U. Maurer
White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is based on the industrial presentation
“More Ada in non-Ada systems” which was given at
the 2021 Ada-Europe virtual conference.

The presentation was an update to the presentation
given at the Ada-Europe 2018 conference in Lisbon
entitled “Using Ada in non-Ada systems” and that was
subsequently published in the Ada User Journal [1].

The work used GCC 7.4.1 built by AdaCore and made
available as part of their 2019 Windows hosted GNAT
for ARM GPL community distribution. The GNAT
sources referred to in the presentation were also
obtained from this distribution.

Keywords: GCC, Modula-2, C, ZFA, ARM

1 Previously

If we restrict ourselves to a subset of Ada, the so called Zero
Footprint Ada (ZFA), then it is possible to write applications
that use a mixture of Ada and C. The Ada we use is not the
Ada with which we are most familiar, it is a very cutback
version – but even so, despite all the restrictions, it can still
be beneficial to write code in Ada rather than in C.

We believe that there are many reasons why one should
program in Ada rather than C. However, from a business
perspective, these reasons may be insufficient to warrant the
complete rewrite of a large, stable and successful system.

Rather than trying to advocate that our systems should be re-
written completely in Ada we showed how existing code
could be supplemented by code written in Ada.

In 2018 our work was a proof of concept. At that time our
management had no intention nor desire to write any code in
Ada. The existing software and expertise were in Modula-2,
a language that can be considered to be a simpler yet similar
language, at least in comparison with alternatives such as the
dreaded C.

2 Data compression

However, all this changed when it was decided that
downloads to our ARM based processors should be
compressed. As products develop, they tend to grow in both
complexity and size, yet the speed of the field bus used to
transfer the executable images remains the same. This results
in the time to download getting longer and longer.

As a consequence, it was decided that it would be an
interesting salable feature if this time could be reduced by
compressing the download. Because we lack the required
expertise to develop this sort of software, this decision would

require us to use some sort of library - either binary, or just
as bad, source written in C.

Another alternative would be to use the ZipAda [2] open-
source code written by our colleague Gautier de Montmollin.
But, as the library’s name suggests, this software is written
in Ada. This presented us with the choice of either using it
directly in Ada or converting it into Modula-2, which, as I’ve
already alluded, is a very similar language. Similar in theory,
but in practice it rather depends on what features of Ada one
has used. Unfortunately for us, Gautier had used many
features of Ada that aren’t supported by Modula-2 - thereby
making a translation virtually impossible. Or at least not
without the risk of introducing all manner of interesting and
hard to find bugs.

The solution was to use the proof of concept work we had
made in 2018 and use his source code directly. I think it says
a lot about the portability of software written in Ada that we
could use the ZipAda software with only the most minor of
changes.

The software was designed to run on a PC reading data from
a file and compressing it to make what is generally referred
to as a Zip File. Instead, we use a PC to read the executable
to be downloaded, compress this and then transmit the
compressed byte stream to the microprocessor which then
uses the same software to decompress the byte stream back
into the executable.

Amazingly this all worked, with almost no effort. We took
software written in Ada that was designed and primarily
works on PCs, recompiled it using an Ada compiler for ARM
and then linked this into our product – that was otherwise
written entirely in machine generated C.

This then was the first commercial use of the work I
presented in 2018 as a theoretical exercise.

3 Floating-point

Up until now all the microprocessors that we have used have
been without floating-point units.

Because floating-point without hardware support is
incredibly inefficient, we explicitly prohibited its use by not
recognizing the Modula-2 floating-point syntax.

In the Ada work I presented in 2018 we used the pragma
Restrictions (No_Floating_Point) in System.ads to impose
the same restriction on routines written in Ada.

However, our latest target microprocessor has a floating-
point unit and so, unsurprisingly, there are plans to use it, so
the dilemma has been to decide how to use it.

192 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

If we permit the floating-point syntax in Modula then we
may encounter problems with our Modula to C translator –
which, obviously, has never been used to translate anything
concerning floating-point. Then there is the problem of what
exactly is floating-point in C and then, lastly, what libraries
are available, how good are they and can we obtain the
sources for them?

An alternative strategy, and what we have ultimately decided
to do, is to forget Modula-2 and, because only our ARM
microprocessor has an FPU, write all our floating-point code
in Ada.

Allowing the Ada syntax was easy – all we had to do was
remove the pragma Restrictions (No_Floating_Point). The
Ada compiler can be directed to generate code using the
ARM floating-point instructions by including the switch
“-mfloat-abi=hard” and the switch “-mfpu” to describe what
sort of FPU the processor has.

Therefore it is relatively easy to support code that merely
performs simple arithmetic.

The fun starts when one wants to use functions that are
provided by the package Ada.Numerics.
Elementary_Functions and/or its long float counterpart
Ada.Numerics.Long_Elementary_Functions.

Trying to compile the Ada statement

X:= Ada.Numerics.Elementary_Functions.Tan(45.0);

will produce the error message

 "Ada.Numerics" is not a predefined library unit

This means that GNAT cannot find the specification for
Ada.Numerics in the source file search path. This
specification file must be provided even though it only
contains two constants: Pi and e.

Moreover, GNAT requires that the specification is provided
in a file with the crunched file name a-numeri.ads.

Once this file is made available, GNAT will then require the
file a-nuelfu.ads and once this is provided, it will start
requiring various system definitions, starting with
System.Generic_C_Math_Interface contained in

s-gcmain.ads

To cut a long story short, to use Ada’s floating point
elementary functions requires that the GNAT compiler be
able to find 14 specification packages in files with crunched
filenames.

Helpfully the compiler tells you what is missing and
therefore these files are relatively easy to find and place in
the source path.

The 14 files are:

 a-numeri.ads

 a-ndelfu.ads

 a-nuelfu.ads

 a-nlelfu.ads

 s-gcmain.ads

 s-libsin.ads

 s-libpre.ads

 s-libdou.ads

 s-exnllf.ads

 s-fatflt.ads

 s-fatlfl.ads

 s-fatgen.ads

 s-fatgen.adb

 s-lisisq.ads

Once GNAT can find these files it will compile. However, it
will then fail at link time.

In my tangent example it will fail with

undefined reference to
`ada__numerics__elementary_functions__tan'

because although we have provided the specification of the
tangent function, we haven’t provided the implementation.

Unfortunately, if we take the source of the implementation
and try to compile a-nuelfu.adb, GNAT produces the error
message

user-defined descendants of package Ada are not allowed

The work-around to this is to rename the sources and to
export the functions with the name they would have had, had
they been compiled as descendants of Ada. If we place the
objects into a static library (object archive) and provide this
library explicitly in the linker script, the GCC can resolve the
references, and all is well.

Our Ada is used in conjunction with C machine generated
from source written in Modula-2. We called this mixture of
Ada and Modula, Adam. For this reason, we chose to base
our library on the root package Adam.

For example, for the Tangent function we copied the source
file a-nuelfu.ads and renamed it to Adam-Numerics-
Elementary_Functions.ads.

We then modified the contents to rename the package name
to Adam.Numerics.Elementary_Functions and exported
every function with the External name prefixed
by "ada__numerics__elementary_functions__"

package Adam.Numerics.Elementary_Functions with
Preelaborate is

 Prefix : constant String :=
 "ada__numerics__elementary_functions__";

 function Tan (X : Float) return Float
 with Inline,
 Export,
 External_Name => Prefix & "tan";

end Adam.Numerics.Elementary_Functions;

For the implementation we renamed the file a-nuelfi.adb to
Adam-Numerics-Elementary_Functions.adb and modified

A. Marr iot , U. Maurer 193

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

the contents so that the package name became
Adam.Numerics.Elementary_Functions.

We had to do this for the following 21 files:

 Adam-Numerics.ads

 Adam-Numerics-Elementary_Functions.ads

 Adam-Numerics-Elementary_Functions.adb

 (a-nuelfu.adb)

 Adam-Numerics-Long_Elementary_Functions.ads

 Adam-Numerics-Long_Elementary_Functions.adb
(a-nlelfu.adb)

 Adam-Generic_C_Math_Interface.ads

 Adam-Generic_C_Math_Interface.adb

 (s-gcmain.adb)

 Adam-Libm.ads

 Adam-Libm.adb (s-libm.adb)

 Adam-Libm-Single.ads

 Adam-Libm-Single.adb (s-libsin.adb, s-lisisq.adb)

 Adam-Libm-Double.ads

 Adam-Libm-Double.adb (s-libdou.adb)

 Adam-Exn_LLF.ads

 Adam-Exn_LLF.adb (s-exnllf.adb)

 Adam-Generic_Attributes.ads

 Adam-Generic_Attributes.adb (s-fatgen.adb)

 Adam-Attributes.ads

 Adam-Attributes.adb (s-fatflt.adb)

 Adam-Long_Attributes.ads

 Adam-Long_Attributes.adb (s-fatlfl.adb)

Other than renaming we did not have to modify the code very
much, but some minor changes had to be made:

3.1 Exception handling
In ZFA, exceptions cannot be propagated outside the
procedure, so either they must be caught and handled
(usually by an SVC instruction) or suppressed if the
exception is thought to be impossible to raise. I refer you to
my previous presentation [1] for a description on how to do
this and why it has to be done.

3.2 Square-Root
In Adam-Libm-Single.adb and Adam-Libm-Double.adb we
implemented the square root function as the built-in intrinsic
so that the FPU VSQRT instruction is used rather than the
acres of code provided in s-lisisq.adb and s-lidosq.adb
respectively.

3.3 Copy_Sign
The function Copy_Sign in s-fatgen.adb didn’t compile
using GCC v7.4.1.

GNAT issued the error message “Incorrect context for
intrinsic convention” on the pragma import for the function
Is_Negative.

Our solution was simply to replace this call with a
comparison with 0.0 and the presentation described the code
this produced and questioned whether or not it was actually
correct.

All this was rendered moot by AdaCore releasing GPL 2021

In this release GNAT (GCC v10.3) no longer recognizes the
intrinsic function Is_Negative and, as a result, the procedure
Copy_Sign has been totally reworked.

Because the new coding is backward compatible the problem
described in the presentation has now effectively been fixed.

3.4 Static library
When all the sources have been modified, the static library
can be built. To build the library we simply compiled all the
.adb files that start with the prefix Adam- and then used the
GCC archive program Ar to place the objects into a static
library. This library is then cited as an input in the GCC
linker script.

4 Returning unconstrained types

String handling in Modula-2 is very primitive. Strings are
simply arrays of characters and because Modula-2 functions
cannot return variable sized objects, they cannot therefore
return strings.

Up until now we have had very little need for string
manipulation. This is probably because our user interface is
PC based rather than executing on any of the
microprocessors. However, this would change if, for
example, we implemented a stand-alone product that
communicated with the user using TCP Telnet or as a web
server using HTML. In such a project we would need
improved string handling – such as that provided by Ada.

However, in order that Ada functions are able to return
unconstrained types such as strings, we need to implement a
secondary stack. This is a per-task area of memory from
which the compiler can allocate space to return
unconstrained types.

First the pragma Restrictions (No_Secondary_Stack) has to
be removed from System.ads otherwise any function that
attempts to return an unconstrained type will cause GNAT
to issue the error message violation of implicit restriction
"No_Secondary_Stack".

Once this restriction pragma has been removed from
System.ads, GNAT will then issue the rather cryptic
message

construct not allowed in configurable run-time mode

What this means is that GNAT has been unable to find the
specification packages that enables returning unconstrained
types. Just like with the enabling of floating-point these
specifications need to be placed in the source search path and
be contained within files with crunched names.

The required specification files are:

 s-parame.ads

 s-secsta.ads

194 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

 s-stoele.ads

Once these have been made available, code can be compiled.

However, linking will fail because of unresolved references.

A program that uses the secondary stack to return
unconstrained types will need the routines:

 system__secondary_stack__ss_allocate

 system__secondary_stack__ss_mark

 system__secondary_stack__ss_release

We provide these routines in the same way as we did the
floating-point routines, namely, in a static library. These
routines are wrappers around our kernel functions to allocate
memory from the calling task’s secondary stack, to read its
secondary stack pointer and to set its secondary stack pointer
respectively.

In our Kernel, when a task is created, the size of its primary
stack is given and optionally the size of a second stack. The
primary stack is accessed via the processor’s stack pointer
register, and the secondary stack via access routines
provided by the Kernel. Both stacks are protected by the
Memory Protection Unit (MPU) and are private to the task.
I.e. a memory fault will be raised should another task attempt
to access them.

The Kernel provides three routines:

 AllocateFromSecondaryStack
Takes the required size as a parameter and returns the
start address of the memory area that has been allocated.

 GetSecondaryStackPointer
Returns the secondary stack pointer of the current task.

 SetSecondaryStackPointer
Sets the task’s secondary stack pointer to the address
passed as its parameter if the address is between the
task’s top of stack and the current secondary stack
pointer.

These routines conveniently directly map onto the routines
required by Ada.

5 String attributes

The attribute ‘image, its short-hand form ‘img and the
attribute ‘value are immensely useful when dealing with
strings. To enable these, we need to provide GNAT with 12
specification packages all contained in files with crunched
filenames.

We need 6 for the image attribute

 s-imgboo.ads

 s-imgllu.ads

 s-imgrea.ads

 s-imguns.ads

 s-imgint.ads

 s-imglli.ads

and a further six for the value attribute

 s-valboo.ads

 s-valint.ads

 s-vallli.ads

 s-valllu.ads

 s-valrea.ads

 s-valuns.ads

At link time we need to resolve unsatisfied references, once
again by use of a static library. Just as we did to support
floating-point, we need to rename the Ada source files to the
parent package Adam, compile them, and place the resultant
objects into a static library.

This time there are 37 files:

 Adam-Image_LLU.ads

 Adam-Image_LLU.adb

 Adam-Image_Uns.ads

 Adam-Image_Uns.adb

 Adam-Img_Bool.ads

 Adam-Img_Bool.adb

 Adam-Img_Int.ads

 Adam-Img_Int.adb

 Adam-Img_LLI.ads

 Adam-Img_LLI.adb

 Adam-Img_LLU.ads

 Adam-Img_LLU.adb

 Adam-Img_Real.ads

 Adam-Img_Real.adb

 Adam-Img_Uns.ads

 Adam-Img_Uns.adb

 Adam-Float_Control.ads

 Adam-Val_Bool.ads

 Adam-Val_Bool.adb

 Adam-Val_Int.ads

 Adam-Val_Int.adb

 Adam-Val_LLI.ads

 Adam-Val_LLI.adb

 Adam-Val_LLU.ads

 Adam-Val_LLU.adb

 Adam-Val_Real.ads

 Adam-Val_Real.adb

 Adam-Val_Uns.ads

 Adam-Val_Uns.adb

 Adam-Val_Util.ads

 Adam-Val_Util.adb

 Adam-Value_LLU.ads

 Adam-Value_LLU.adb

 Adam-Value_Uns.ads

A. Marr iot , U. Maurer 195

Ada User Journal Volume 42, Numbers 3-4, September-December 2021

 Adam-Value_Uns.adb

 Adam-Case_Util.ads

 Adam-Case_Util.adb

6 Images of Enumerations

However this isn’t quite the whole story.

Left like this, obtaining the string representation of an
enumeration literal does not bring back the uppercase
version of the declaration but the string representation of its
position within the enumeration.

For example:

 type Color is (Blue, Green, Red);
 C : Color := Red;
 CI : constant String := C'image;

In the above example we would expect CI to be the 3 byte
string “RED” whereas, in fact, it is the two byte string “ 2”!

I.e. GNAT has silently, and without any warning
whatsoever, implemented

CI : constant String:= Color'pos(C)'image;

rather than what was written!

For the correct implementation the name strings have to be
retained. GNAT can be instructed to do this by commenting
out or otherwise removing the pragma Discard_Names in
System.ads.

The comment in System.ads for this pragma is

“Disable explicitly the generation of names associated with
entities in order to reduce the amount of storage used. These
names are not used anyway.”

However, the last sentence in this comment is no longer true,
the names, if they are there, can be used.

But just providing the names is not sufficient. Two more
crunched specifications need to be provided:

 s-imenne.ads

 s-valenu.ads

along with their implementations:

 Adam-Img_Enum_New

 Adam-Val_Enum

Then, and only then, does GNAT compile the correct code
and the program work correctly and according to the Ada
standard.

7 Protected Objects

As I mentioned in the description of the secondary stack, our
system is multi-tasking, but we cannot use Ada’s tasking
model because ZFA precludes the use of Ada’s run-time.
However, our Kernel does support multi-tasking and
therefore we need to protect certain data against
simultaneous access.

In Modula-2, one way of doing this is by using a semaphore
for each group of variables that need to be protected.

Unfortunately, this approach is somewhat error prone, it is
all too easy to forget to write the code to wait on the group’s
semaphore, or even sometimes to use the wrong semaphore.

Ada makes this easier and less error prone with its protected
object construct. Fortunately, although we don’t use Ada’s
tasking model, ZFA supports the implementation of
protected objects, albeit restricted to procedural operations.
Protected entries are not supported because these would not
work with our state machine model.

The following is an example of how we can use a protected
type to ensure that the increment of a quadword is made task
safe on a processor where 64-bit operations are not atomic.

type Value is mod 2**64;

protected Data is
 procedure Increment;
 function Actual_Value return Value;
private
 The_Value : Value := 0;
end Data;

protected body Data is
 procedure Increment is
 begin
 The_Value := The_Value + 1;
 end Increment;

 function Actual_Value return Value is
 begin
 return The_Value;
 end Actual_Value;
end Data;

If we try to compile this, GNAT will issue the by now
familiar message

construct not allowed in configurable run-time mode

indicating that an Ada feature needs to be enabled by
supplying a specific specification package within a file with
a crunched filename.

To enable protected objects, we need to supply:

 s-taprob.ads

 s-taskin.ads

At link-time we will need to provide three routines

 system__tasking__protected_objects__initialize_protec
tion

 system__tasking__protected_objects__lock

 system__tasking__protected_objects__unlock

Which we implement simply as wrapper routines around our
Kernel’s semaphore routines Initialize, Wait_For and Signal
respectively.

8 Dynamic memory allocation

For example

 C := new Character (‘x’);

196 More Ada in Non-Ada Systems

Volume 42, Numbers 3-4, September-December 2021 Ada User Journal

In order that we can dynamically allocate memory using the
Ada “new” construct we need to enable the feature by
including the specification file s-memory.ads

At link time we must then satisfy the reference to
___Gnat_Malloc with an implementation that simply calls
our Kernel’s Allocate function that takes the desired amount
of memory as a parameter and returns the address of the
allocated memory.

9 Summary

In my first presentation [1] I described how Ada could be
linked into an application predominantly written in C, how
Ada routines could call C routines and C routines call Ada
and how the Ada packages could be correctly elaborated.

This presentation goes further and shows that even more Ada
features can be used if they are enabled by the simple

expedient of providing the required specification package in
a file with the expected crunched filename. I also explained
how the implementation could be provided by a static library
and how this could be built. Together, these two techniques
have allowed us to expand our use of Ada to include floating-
point, functions returning strings, protected objects and
memory allocation thereby making Zero Footprint Ada even
more useful.

References

[1] A. Marriott and U. Maurer, “Using Ada in non-Ada
Systems”, Ada User Journal, vol 39 no 3, pp 180-187,
2018.

[2] Zip-Ada is a free, open-source programming library for
dealing with the Zip compressed archive file format.
https://sourceforge.net/projects/unzip-ada or
ssh://git@github.com/zertovitch/zip-ada

